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Chapter 1  

Introduction 

This guide is designed as a series of tuning tasks, broken out by relative sections that 
help insure that the Sitecore implementation is healthy and running at its optimal 
performance.  

The Sitecore CMS Diagnostics Guide is a companion guide that is available to help 
diagnose performance related issues. 

This manual contains the following chapters: 

¶ Chapter 1 — Introduction 

¶ Chapter 2 — Tuning Procedures — General 

¶ Chapter 3 — Tuning Procedures — Database Properties 

¶ Chapter 4 — Tuning Procedures — Sitecore Caches 

¶ Chapter 5 — Tuning Procedures — IIS Settings 

¶ Chapter 6 — Tuning Procedures — Sitecore Client Optimizations 

¶ Chapter 7 — Tuning Procedures — Sitecore Miscellaneous Content Delivery 
Server Optimizations 

¶ Chapter 8 — Tuning Procedures — Sitecore Search 
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Chapter 2  

Tuning Procedures — General 

Tuning Procedures – General is a series of tasks that are designed to check that the 
Sitecore implementation is configured to run at its peak performance.  

Each task contains introductory information, required skills, symptoms that are likely 
to occur, procedures for checking the configuration, how to solve, and what results to 
record.  

More specific tuning procedures are explained in the following chapters. 

This chapter contains the following sections: 

¶ Check SQL Server Index Fragmentation Level 

¶ Checking for a SQL Server Maintenance Plan 

¶ Cleanup Database Tables 

¶ Check Database Cleanup Agents 

¶ Software and Server Configuration 
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2.1 Check SQL Server Index Fragmentation Level 

As indexes age, insertion and deletion of noncontiguous data can take its toll and cause 
fragmentation to occur. This can happen in just a few days on a busy CMS database. Minor amounts 
of fragmentation won't generally hurt performance. But as the percentage of fragmentation increases, 

performance suffers dramatically. 

2.1.1 Required Skills 

¶ A working knowledge of SQL Server Management Studio. 

2.1.2 Symptoms 

¶ Dramatic increase in CPU usage. 

¶ Performance degradation on queries. 

¶ Performance degradation on database writes. 

¶ Dropped connections to the database server. 

¶ Slow performance of renderings. 

¶ Slow performance of the Sitecore client tools — Desktop, Content Editor, and so on. 

2.1.3 Procedure to Check for Fragmented Indexes 

To check for percentage of fragmentation on indexes, run the Index Physical Statistics Standard 
Report against the CMS databases (Core, Master, Web) as follows: 

1. Launch SQL Server Management Studio. 

2. In the Object Explorer, right click the Master database and click Properties. 

3. Click the Options page and make sure that the Compatibility level is set for the version of 
SQL Server that you have installed. 

For more information, see the section . 

4. Click OK. 

5. In the Object Explorer, right click the Master database and click Reports, Standard 
Reports, Index Physical Statistics. 

6. SQL Server Management Studio generates a report showing information about the Table 
Names, Index Names, Index Type, Number of Partitions and Operation Recommendations. 

7. Repeat steps 5 - 6 for the Core and Web databases to check the level of fragmentation that 
has occurred on the indexes. 
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2.1.4 Understanding the Results 

The output looks like this: 

 

One key value that is provided in the report is the Operation Recommended field. Any value of 
Rebuild is an indication that the index is fragmented. 

By expanding the # Partitions field, you can see the % of fragmentation for a given index. 

 

2.1.5 Sitecore Recommendation 

Sitecore recommends keeping index fragmentation below 10%. 

2.1.6 How to Solve 

In order to defragment the indexes for the CMS databases (Core, Master, Web), execute a 
defragmentation maintenance plan as follows: 

1. Launch SQL Server Management Studio. 

2. In the Object Explorer expand the Management / Maintenance Plans folder. 

3. Right click the *defragment indexes maintenance plan and click Execute. 

If such a maintenance plan does not exist, see the section Checking for a SQL Server Maintenance 
Plan. 
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2.2 Checking for a SQL Server Maintenance Plan 

A Maintenance Plan eliminates the need for manual maintenance of the database(s) by running an 
automated set of tasks on a scheduled basis. This plan performs regular checks and maintenance on 
the database(s), ensuring that the database(s) in optimal health. 

2.2.1 Required Skills 

¶ A working knowledge of SQL Server Management Studio. 

¶ A working knowledge of running T-SQL scripts. 

2.2.2 Symptoms 

¶ The database is not running to its optimal performance. 

¶ Indexes are becoming fragmented and taken care of. 

2.2.3 Procedure to Check for SQL Server Maintenance Plan 

To check for the existence of SQL Server Maintenance Plan, and that it follows Sitecore best 
practices, do the following: 

1. Launch SQL Server Management Studio. 

2. In the Object Explorer, expand the Management / Maintenance Plans folder. 

3. If a maintenance plan exists, double click it to see how it is configured. This is used in the 
Findings section of this task. 

2.2.4 Understanding the Results 

The output looks like this: 
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The Maintenance Plan should contain: 

¶ A Check Database Integrity task 

¶ A Rebuild Index Task. 

¶ An Update Statistics task. 

2.2.5 Sitecore Recommendation 

For the CMS databases Sitecore recommends that a SQL Server Maintenance Plan be in place. The 
Maintenance Plan contains a Check Database Integrity task, a Rebuild Index task, and an Update 
Statistics task. 

2.2.6 How to Solve 

SQL Server Management Studio provides an IDE for the simplification of creating Maintenance Plans. 
To create a MP for defragmenting the indexes: 

1. Launch SQL Server Management Studio. 

2. In the Object Explorer expand the Management folder. 

3. Right click the Maintenance Plans folder and select New Maintenance Plan. 

4. Give the MP a meaningful name such as Defragment CMS Indexes. 

5. From the Toolbox drag and drop a Check Database Integrity Task, Rebuild Index Task, 
Update Statistics Task and place them vertically in the same order. 

6. Connect the tasks together by dragging the arrow from one box to the other so they are 
connected as: Check Database Integrity Task -> Rebuild Index Task -> Update Statistics 
Task. 

7. Right click the Check Database Integrity Task and select Edit. 

8. Select the Connection and CMS databases — Core, Master, Web — and click OK. 

9. Right click the Rebuild Index Task and select Edit. 

10. Select the Connection and CMS databases — Core, Master, Web — and then select the 
Keep index online while reindexing checkbox — enterprise edition of SQL Server only — 
and click OK. 

11. Right click the Update Statistics Task and select Edit. 

12. Select the Connection and CMS databases — Core, Master, Web — and set the Object to 
Tables and Views, Update All existing statistics, Scan type = Full scan, and click OK. 

13. Click the calendar icon next to the Schedule (upper right corner) and set the schedule to run 
weekly. 

14. Save. 

2.2.7 Notes and Comments 

This task shows you how to build a single maintenance plan that rebuilds the indexes for the Core, 
Master, and Web databases, with a schedule to run the maintenance plan weekly. If you find that 
some database indexes fragment at a higher rate than others, separate the maintenance plan so that 
there is a plan for each of the Core, Master, and Web databases. This allows you to create different 
schedules based on how fast the indexes become fragmented. 
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2.3 Cleanup Database Tables 

There is a series of cleanup agents configured in the web.config file to remove artifact data from the 
History, PublishQueue and EventQueue tables. However, at times these tables become too large 
which results in timeouts occurring while the agents are trying to do their job. 

This task is designed to check the size of the tables, and truncate them if they contain greater than 
1000 rows. 

2.3.1 Required Skills 

¶ A working knowledge SQL Server Management Studio. 

¶ A working knowledge of running SQL scripts. 

2.3.2 Symptoms 

¶ Slow performance during publishing. 

¶ Slow performance during indexing. 

2.3.3 Procedure to Clean up the History, PublishQueue, and 
EventQueue tables 

To clean up the History, PublishQueue, and EventQueue tables: 

1. Launch SQL Server Management Studio. 

2. Click New Query. 

3. Run the following query, replacing /* database name */  with the name of the database 

that the script runs against. 

 

USE /* database name */  

 

/* TRUNCATE History TABLE */  

IF OBJECT_ID( 'History' ,  'U' )  IS  NOT NULL 

 IF (( SELECT COUNT(*)  FROM [History] )  > 1000 )  

 BEGIN 

  TRUNCATE TABLE [History] ;  

  PRINT 'Truncated the History Table' ;  

 END 

  

/* TRUNCATE EventQueue TABLE */  

IF OBJECT_ID( 'EventQueue' ,  'U' )  IS  NOT NULL 

 if (( SELECT COUNT(*)  FROM [EventQueue] )  > 1000 )  

 BEGIN 

  TRUNCATE TABLE [EventQueue] ;  

  PRINT 'Truncated the EventQueue Table' ;  

 END 

 

/* TRUNCATE PublishQueue TABLE */  

IF OBJECT_ID( 'PublishQueue' ,  'U' )  IS  NOT NULL 

 IF (( SELECT COUNT(*)  FROM [PublishQueue] )  > 1000 )  

  BEGIN 

   TRUNCATE TABLE [PublishQueue] ;  

   PRINT 'Truncated the PublishQueue Table' ;  

  END 
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2.3.4 Understanding the Results 

The output looks similar to this: 

 

¶ In the Messages window, the tables that were truncated are listed. 

2.3.5 Sitecore Recommendation 

Sitecore recommends that the number of rows (entries) in the History, PublishQueue, and 
EventQueue tables be less than 1000. This prevents timeouts from occurring while the cleanup 
agents run. 

2.3.6 How to solve 

Run the procedure described earlier. 
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2.4 Check Database Cleanup Agents 

There is a series of cleanup agents configured in the web.config file to remove artifact data from the 
History, PublishQueue and EventQueue tables. 

This task is designed to make sure that those tasks are configured and scheduled to run on a periodic 
basis. 

2.4.1 Required Skills 

¶ A working knowledge the Sitecore web.config  file. 

2.4.2 Symptoms 

¶ Slow performance during publishing. 

¶ Slow performance during indexing. 

2.4.3 Procedure to Check if the History, PublishQueue, and 
EventQueue Cleanup Tasks are Configured 

The following procedure describes where to look to see if the cleanup tasks are configured to run 
periodically: 

1. Open up the web.config  file in your favorite editor. 

2. Navigate to the <configuration><sitecore><scheduling></scheduling>  node. 

2.4.4 Understanding the Results 

The output looks like this — some <agent>  nodes have been removed for clarity: 

<scheduling > 

      <! --  Time between checking for scheduled tasks waiting to execute -- > 

      <frequency >00:05:00 </ frequency > 

       

      <! --  Agent to clean up history data -- > 

      <agent  type =" Sitecore.Tasks.CleanupHistory "  method =" Run"  interval =" 04:00:00 " />  

      <! --  Agent to clean up publishing queue -- > 

      <agent  type =" Sitecore.Tasks.CleanupPublishQueue, Sitecore.Kernel "  method =" Run"  

interval =" 04:00:00 " > 

        <DaysToKeep >30</ DaysToKeep > 

      </ agent > 

      <! --  Agent to clean u p the event queue -- > 

      <agent  type =" Sitecore.Tasks.CleanupEventQueue, Sitecore.Kernel "  method =" Run"  

interval =" 04:00:00 " > 

        <DaysToKeep >1</ DaysToKeep > 

      </ agent > 

 

¶ Check that the <scheduling><frequency>  is set to something other than 00:00:00 so that 

the agents are checked to see if they are ready to be executed. 

¶ Make sure that the interval for Sitecore.Tasks.CleanupHistory is greater than 00:00:00. 

¶ Check that the interval for Sitecore.Tasks.CleanupPublishQueue is greater than 00:00:00. 

¶ Check that the interval for Sitecore.Tasks.CleanupEventQueue is greater than 00:00:00. 
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2.4.5 Sitecore Recommendation 

Sitecore recommends that the scheduling frequency be enabled by setting it to a value greater than 
00:00:00, and that cleanup agents for the History, PublishQueue, and EvenQueue be configured to 
have an interval greater than 00:00:00.  

The default value for the frequency = 00:05:00 and the default for the intervals = 04:00:00. 

2.4.6 How to Solve 

If any of the values for the scheduling frequency, Sitecore.Tasks.CleanupHistory interval, 
Sitecore.Tasks.CleanupPublishQueue interval, and/or Sitecore.Tasks.CleanupEventQueue is set to 
00:00:00, they should be increased to allow them to run. The default values that are supplied in a 
non-modified web.config file are as follows: 

¶ Scheduling frequency = 00:05:00 (5 minutes) 

¶ Sitecore.Tasks.CleanupHistory interval = 04:00:00 (4 hours) 

¶ Sitecore.Tasks.CleanupPublishQueue interval = 04:00:00 (4 hours) 

¶ Sitecore.Tasks.CleanupEventQueue interval = 04:00:00 (4 hours) 
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2.5 Software and Server Configuration 

This check is used to determine if the software (OS, IIS, and SQL Server) and server configuration 
used meets Sitecore recommended practices for optimal performance. Starting with a minimum 
baseline, a scoring system is used as a means to record the performance level of the server. The 
scoring is broken down into sections, with each section having its own value. A score of 1 in any 
section shows that the section meets the minimum Sitecore recommendation. A score > 1 is able to 
perform at a higher level. And a score of < 1 is a red flag, indicating that additional resources, or 
changes, need to be made to bring the server(s) up to at least the Sitecore recommendations. 

The scoring system is based on the recommended requirements provided in the installation guide 
(based on Sitecore version 6.4.x) as listed on the SDN.   

Note — Using a Content Delivery Network(CDN) 
In the case of high-traffic websites, it is an industry practice to use a CDN to serve certain kinds of 
assets in order to boost performance. Sitecore recommends the use of a CDN for assets such as 
media files, documents, CSS files, JavaScript files, etc. where those assets are fairly static and do not 
require Sitecore security. This allows maximum server resources to be dedicated to delivering 
dynamic and/or secure content. 

For assets that are being served from a CDN, careful consideration should be given to CEP features 
such as analytics, personalization and engagement automation that could potentially be impacted by 
serving content from outside of the Sitecore environment. 

The use, setup, and configuration of a CDN are beyond the scope of this document.  

The following blog entries provide useful information on the subject: 

http://blog.image0.com/sitecore/using-sitecore-publishing-pipeline-to-refresh-external-cdn-cache/ 

http://www.cognifide.com/blogs/sitecore/the-ultimate-approach-to-storing-sitecore-media-items-in-cdn/ 

2.5.1 Required Skills 

¶ A working knowledge of system infrastructures. 

2.5.2 Symptoms 

¶ Poor performance. 

¶ Degradation in performance as traffic increases. 

2.5.3 Sitecore Recommendation 

Sitecore recommends for all servers: 

¶ All servers should be running in 64-bit mode. 

¶ All servers should be running Windows Server 2008 R2 with the latest security patches. 

Sitecore recommends for the Content Authoring Environment (Web Server): 

¶ IIS 7.x 

¶ Quad Core Processor 

¶ 8 GB RAM 

¶ 250 GB 

http://blog.image0.com/sitecore/using-sitecore-publishing-pipeline-to-refresh-external-cdn-cache/
http://www.cognifide.com/blogs/sitecore/the-ultimate-approach-to-storing-sitecore-media-items-in-cdn/
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Sitecore recommends for the Content Authoring Environment (SQL Server): 

¶ SQL Server 2012 x64 

¶ Dual Quad Core processors 

¶ 12 GB RAM 

¶ 250 GB disk for data files 

¶ 250 GB disk for log files 

Sitecore recommends the following for the Content Delivery Environment (Web 
Server): 

¶ IIS 7.x 

¶ Dual Quad Core processors 

¶ 8 GB RAM 

¶ 250 GB disk 

Sitecore recommends the following for the Content Deliver Environment (SQL 
Server): 

¶ SQL Server 2012 x64 

¶ Dual Quad Core processors 

¶ 12 GB RAM 

¶ 250 GB disk for data files 

¶ 250 GB disk for log files 
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Chapter 3  

Tuning Procedures — Database Properties 

Tuning Procedures – Database Properties contains a series of tasks designed to 
check the configuration of SQL Server database properties. Proper configuration of 
these properties help the Sitecore implementation run at its peak performance. 

This chapter contains the following sections: 

¶ Compatibility Level 

¶ Auto Close Property Set To False 

¶ Auto Shrink Property Set To False 

¶ Recovery Model Set to Simple 
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3.1 Compatibility Level 

Compatibility Level effects SQL syntax and query parsing, and should have no impact on 
performance. Setting the Compatibility Level to a value of either SQL Server 2008(100) for servers 
running SQL Server 2008/2008 R2 or to SQL Server 2012(110) for servers running SQL Server 2012 
takes advantage of new T-SQL features, which are used in many of the scripts / commands used in 
the CMS Performance Tuning Guide. 

3.1.1 Required Skills 

¶ A working knowledge of SQL Server Management Studio. 

3.1.2 Symptoms 

¶ Inability to run scripts to improve performance. 

3.1.3 Procedure to Check the Database Compatibility Level 

To check for the value of the Database Compatibility Level: 

1. Launch SQL Server Management Studio. 

2. In the Object Explorer, right click the CMS Master database and click Properties. 

3. Click the Options page and look at the Compatibility Level property. 

4. Click OK. 

5. Repeat steps 1 - 4 for the CMS Core and Web databases. 
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3.1.4 Understanding the Results 

The output looks like this: 

 

Important 
You must set the Compatibility Level property to SQL Server 2008(100) if you are using SQL Server 
2008/2008 R2 and to SQL Server 2012(110) if you are using SQL Server 2012. 

3.1.5 How to solve 

In order to set the Compatibility Level property: 

1. Launch SQL Server Management Studio. 

2. In the Object Explorer, right click the CMS Master database and click Properties. 

3. Click Options page and make sure that the Compatibility Level is set to SQL Server 
2008(100) for SQL Server 2008/2008 R2 or to SQL Server 2012(110) for SQL Server 2012. 

4. Click OK. 

5. Repeat steps 1 - 4 for the CMS Core and Web databases. 
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3.2 Auto Close Property Set To False 

When SQL Server opens a database, resources are allocated to maintain that state. Memory for 
locks, buffers, security tokens, etc. are all assigned. These operations take time. The Auto Close 
property dictates how these resources are handled. If it is set to 'true' or 'ON', then when the last 
connection is closed these resources are deallocated. This may seem like a good thing, but if a new 
connection comes in within a short period of time (1/10th of second or quicker), then all of those 
resources need to be spun up again. Setting the Auto Close property to false or OFF prevents this 
from happening. 

3.2.1 Required Skills 

¶ A working knowledge of SQL Server Management Studio. 

3.2.2 Symptoms 

¶ Longer times required connecting to the database. 

3.2.3 Procedure to check for Auto Close Property value 

To check for the value of the Auto Close property: 

1. Launch SQL Server Management Studio. 

2. In the Object Explorer, right click the CMS Master database, and click Properties. 

3. Click Options page and look at the Auto Close property. 

4. Click OK. 

5. Repeat steps 1 - 4 for the CMS Core and Web databases. 

3.2.4 Understanding the Results 

The output looks like this: 
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3.2.5 Sitecore Recommendation 

Sitecore recommends that the Auto Close property be set to False. 

3.2.6 How to Solve 

To set the Auto Close property: 

1. Launch SQL Server Management Studio. 

2. In the Object Explorer, right click the CMS Master database, and click Properties. 

3. Click Options page and make sure that the Auto Close property is set to False. 

4. Click OK. 

5. Repeat steps 1 - 4 for the CMS Core and Web databases. 
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3.3 Auto Shrink Property Set To False 

The Auto Shrink property has the downside of a) it uses a lot of resources when it's called, and b) you 
have no control over when it is being called. If you combine Auto Shrink with Auto Growth, you can 
get into a spiral of constantly growing and shrink the database, taking valuable resources away from 
other database tasks as well as causing fragmentation issues. If a database or file requires a SHRINK 
command, it should be done so via a script, command or scheduled Maintenance Plan. Setting the 
Auto Shrink property to false or OFF disables this feature. 

3.3.1 Required Skills 

¶ A working knowledge of SQL Server Management Studio. 

3.3.2 Symptoms 

¶ Performance degradation. 

3.3.3 Procedure to Check the Auto Shrink Property Value 

To check for the value of the Auto Shrink property: 

1. Launch SQL Server Management Studio. 

2. In the Object Explorer, right click the CMS Master database, and click Properties. 

3. Click Options page and look at the Auto Shrink property. 

4. Click OK. 

5. Repeat steps 1 - 4 for the CMS Core and Web databases. 

3.3.4 Understanding the Results 

The output looks like this: 
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3.3.5 Sitecore Recommendation 

Sitecore recommends that the Auto Shrink property be set to False. 

3.3.6 How to Solve 

To set the Auto Shrink property: 

1. Launch SQL Server Management Studio. 

2. In the Object Explorer, right click the CMS Master database, and click Properties. 

3. Click Options page and make sure that the Auto Shrink property is set to False. 

4. Click OK. 

5. Repeat steps 1 - 4 for the CMS Core and Web databases. 
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3.4 Recovery Model Set to Simple 

In Simple Recovery Model SQL Server logs minimal amount of information in the transaction log. SQL 
Server basically truncates the transaction log whenever the transaction log becomes 70 percent full or 
the active portion of the transaction log exceeds the size that SQL Server could recover in the amount 
of time, which is specified in the Recovery Interval server level configuration.  

Setting Recovery Model to Simple has the lowest amount of overhead over Full and Bulk-logged, 
which is crucial to the performance requirements needed for the CMS databases. 

3.4.1 Required Skills 

¶ A working knowledge of SQL Server Management Studio. 

3.4.2 Symptoms 

¶ Performance degradation during recovery intervals. 

3.4.3 Procedure to Check the Recovery Model Property Value 

To check the value of the Recovery Model property: 

1. Launch SQL Server Management Studio. 

2. In the Object Explorer, right click the CMS Master database, and click Properties. 

3. Click Options page and look at the Recovery Model property. 

4. Click OK. 

5. Repeat steps 1 - 4 for the CMS Core and Web databases. 

3.4.4 Understanding theResults 

The output looks like this: 
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3.4.5 Sitecore Recommendation 

Sitecore recommends that you set the Recovery Model property to Simple. 

3.4.6 How to Solve 

To set the Recovery Model property: 

1. Launch SQL Server Management Studio. 

2. In the Object Explorer, right click the CMS Master database, and click Properties. 

3. Click Options page and make sure that the Recovery Model property is set to Simple. 

4. Click OK. 

5. Repeat steps 1 - 4 for the CMS Core and Web databases. 
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Chapter 4  

Tuning Procedures — Sitecore Caches 

Investigation and configuration of the Sitecore Caches is broken down into multiple 
tasks. This way each task is more focused and simplified. The focus is on 
configuration and tuning of the Sitecore Database Caches (prefetch, data, and item 
caches. 

For configuration of the output rendering caching properties, the customer should be 
made aware of both the Sitecore Cache Configuration Reference and the Sitecore 
Presentation Component Reference as to how properly enable and the properties to 
expire these caches.  

Please note that configuration and tuning of the Sitecore Caches should only be 
performed on a test or develop environment, and never in production since changes 
to the caches flushes them. This could lead to poor user experience in the production 
environment. 

Once the caches have been tuned, the changes made to the configuration files can 
be transferred to the production environment during an off peak time. 

This chapter contains the following sections: 

¶ Setting Initial Cache Values 

¶ Tuning Sitecore Caches 

¶ Configuring Prefetch Cache Guidelines 

¶ Configuring Output (Rendering) Cache Guidelines 

http://sdn.sitecore.net/Reference/Sitecore%206/Cache%20Configuration%20Reference.aspx
http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20Reference.aspx
http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20Reference.aspx
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4.1 Setting Initial Cache Values 

This task sets the initial values for the Sitecore Database and html output Caches, depending on the 
environment being addressed. These values are used during the tuning phase of the caches.  

Warning 
Changing of cache values should only be performed on a test or development environment. Once the 
caches have been tuned, the new cache values can be transferred to the production environment with 
the understanding that the caches are flushed once the changes have been saved. 

4.1.1 Required Skills 

¶ A working knowledge the Sitecore configuration files. 

4.1.2 Symptoms 

¶ Limited amount of memory to caches 

¶ Frequent eviction of caches due to limited memory 

¶ Slow page rendering performance 

4.1.3 Initial Values 

The following table indicates a good starting point for setting the database and html output caches. 
These values are based on a) environment, and b) that you are running in 64 bit mode. For a system 
that is running in 32 bit mode, values should be halved. Note, we strongly recommended that you do 
not run in 32 bit mode due to memory availability restrictions. 

 

Environment / Target Cache Value 

Content Delivery Only 

  

Web Prefetch 200 MB 

Web Data 200 MB 

Web Item 200 MB 

Output (per site) html 100 MB 

CMS Only 

  

Master Prefetch 200 MB 

Master Data 200MB 

Master Item 200 MB 

CMS and Content Delivery on same server (master and web databases) 

  

Master Prefetch 200 MB 

Master Data 200 MB 

Master Item 200 MB 



Sitecore CMS 7.0-7.2  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2017 Sitecore. All rights reserved.  

Page 26 of 59 

Environment / Target Cache Value 

Web Prefetch 150 MB 

Web Data 150 MB 

Web Item 150 MB 

Output (per site) html 100 MB 

CMS and Content Deliver on same server (Live mode)   

Master Prefetch 300 MB 

Master Data 300 MB 

Master Item 300 MB 

Output (per site) html 100 MB 

4.1.4 Procedure to Set Data and Item Caches to Initial Values  

To set the data and item caches to: 

1. Open up the web.config  file in an editor — located in the web root directory. 

2. Navigate to <configuration><sitecore><databases><database 

id="x"><cacheSizes>   — where "x" = the database listed in the initial values table above. 

 

<cacheSizes  hint ="setting">  

<data >20MB</ data > 

<items >10MB</ items > 

<paths >500KB</ paths > 

<standardValues >500KB</ standardValues > 

</ cacheSizes > 

 

3. Set the initial values for the data and item database caches. 

4. Repeat for each database, based on the environment you are running. 

4.1.5 Procedure to Set the Prefetch Caches to Initial Values  

To set the prefetch caches to initial values: 

1. The prefetch cache configuration is located in the App_Config \ Prefetch  directory. Each 

database — Core, Master, and Web — have their own configuration file. Based on the initial 
values table above, edit the appropriate file for the database you are working with. 

2. Open the prefetch configuration file. 

3. Navigate to  <configuration><cacheSize>   

<configuration > 

  <cacheSize >20MB</ cacheSize > 

4. Set the initial value for the prefetch cache. 

5. Repeat for each database, based on the environment you are running. 



CMS Performance Tuning Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2017 Sitecore. All rights reserved.  

Page 27 of 59 

4.1.6 Procedure to Set the Html Output Caches to Initial Values  

To set the data and item caches to: 

1. Open up the web.config  file in an editor — located in the web root directory. 

2. Navigate to <configuration><sitecore><sites><site name="website">  

 

<site  name=" website "  virtualFolder =" / "  physicalFolder =" / "  rootPath =" /sitecore/content "  

startItem =" /home "  database =" web"  domain =" extranet "  allowDebug =" true "  cacheHtml =" true "  

htmlCacheSize =" 100MB"  registryCacheSize =" 0"  viewStateCacheSize =" 0"  

xslCacheSize =" 5MB"  filteredItemsCacheSize =" 2MB"  enablePreview =" true "  enableWebEdit =" true "  

enableDebugger =" true "  disableClientData =" false " />  

 

3. Set the initial values for the html output cache. 

4. Repeat for each website, based on the environment you are running. 

4.1.7 Sitecore Recommendation 

Sitecore recommends that the prefetch, data, item, and html output caches be set to initial values 
prior to performing cache tuning. 

4.1.8 How to Solve 

Follow the procedures described earlier about how to set the initial values for the prefetch, data, item, 
and html output caches based on your environment. 
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4.2 Tuning Sitecore Caches 

This task describe the procedures used to tune the Sitecore prefetch, data, and item caches, using a 
load generator and the Sitecore cache.aspx page to monitor the size and eviction of the various 
caches. For information about configuration of the output (HTML) and rendering cache, see the 
Sitecore Cache Configuration Reference and the Sitecore Presentation Component Reference 
manuals. 

Cache tuning is an ongoing process that needs to be revisited from time to time. As the website grows 
with additional content / items, the sizes of the caches may need to be modified to keep the site 
running at its optimal performance levels. 

4.2.1 Required Skills 

¶ A working knowledge of the cache.aspx page. 

¶ A working knowledge of Sitecore configuration files. 

¶ A working knowledge of a load generation tool such as WCAT or Web Performance Load 
Tester. 

4.2.2 Symptoms 

¶ Poor solution performance. 

¶ Excessive server load. 

¶ Decreased system capacity. 

4.2.3 Procedure 

Tuning the Sitecore database caches is an iterative process that involves running a generated load 
against your test or development site, checking to see how the size of the cache compares to its max 
size (or initial values) as well as the eviction rate, modifying the cache values, and re-checking. 

4.2.4 Prerequisites 

The Sitecore database caches need to be set to initial values prior to tuning. Refer to: Setting Initial 
Cache Values 

A load generation tool and script is needed to exercise the caches. For more information about 
programs to generate web load, see the Using WCAT to Generate Load or Using Web Performance 
Load Tester. 

(Sitecore Recommended) The OS System Type is running in 64-bit mode. 

4.2.5 Procedure for tuning the Sitecore database caches 

1. Run a load generator that hits all items in all languages. The time that the load generator runs 
should be long enough to go through the entire tuning process, so that it does not require 
starting and stopping during the process. 

2. While the load generator is running, navigate to /sitecore/admin/cache.aspx page. The 
caches of interest, depending on environment, are the Master[data], Master[items], 
Web[data], Web[items], SqlDataProvider- Prefetch data(master), and SqlDataProvider - 
Prefetch data(web). 

 

http://sdn.sitecore.net/Reference/Sitecore%206/Cache%20Configuration%20Reference.aspx
http://sdn.sitecore.net/Reference/Sitecore%206/Cache%20Configuration%20Reference.aspx
http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20Reference.aspx
http://www.theclientview.net/?p=131
http://www.theclientview.net/?p=251
http://www.theclientview.net/?p=251
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3. In order to tune the caches you must hit the refresh button on the page (not the browser 
refresh) often to see how the caches are reacting to the load. What you want to look at is how 
the Size of the cache compares to the MaxSize, as well as the fluctuations that occur with the 
Delta value. Following this, here are some guidelines for adjusting the cache sizes (please 
note that the maximum amount of memory that you can assign to caches is dependent on the 
amount of available memory that is in the system. The more memory that you have the better  
[see hardware recommendation task]): 

4. If the Delta for the cache fluctuates constantly, or if the size of the cache is consistently > 
80% of the MaxSize, increase the size of the caches by 50%. 

5. If the size of the cache remains < 50% of the MaxSize, decrease the size of the cache by 
25% to reduce memory consumption. 

6. Repeat step 3 until the caches are stable. Ideally you would like to see the cache sizes be 
between 70% and 80% without constant fluctuations to the Delta. 

4.2.6 Sitecore Recommendation 

Sitecore recommends that the Sitecore database cache size(s) is between 70% and 80% of their 
MaxSize, without seeing constant fluctuations to the Delta value. 

4.2.7 How to Solve 

Follow the procedure for tuning the Sitecore database caches described earlier. 
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4.3 Configuring Prefetch Cache Guidelines 

Configuring Prefetch Cache Guidelines is not a task, but more of a primer on what the prefetch 
caches are, as well as recommended practices on how to configure and utilize them. 

It is highly recommended that the Sitecore Cache Configuration Reference be read to gain a full 
understanding of Sitecore Caching. Refer to: 
http://sdn.sitecore.net/upload/sitecore6/sc62keywords/cache_configuration_reference_us.pdf 

4.3.1 Understanding the Prefetch Cache 

Prefetch caches are populated at application initialization, based on the information provided in the 
prefecth configuration files. This results in a smoother user experience after an application restart. 
However, excessive use of the prefetch cache can increase the time required for the application to 
restart, giving a negative user experience. 

To understand how the prefetch caches are utilized once the application is up and running, a view into 
how Sitecore caching works is required: 

When a database item cache does not contain an entry for an item, Sitecore retrieves the 
corresponding entry from the database data cache, converts it to a different type, and stores that 
converted data as an entry in the database item cache. When the database data cache does not 
contain an entry for an item, Sitecore retrieves the corresponding entry from the database prefetch 
cache, converts it to a different type, and stores that converted data as an entry in the database data 
cache. When an entry does not exist for an item in a database prefetch cache, Sitecore retrieves that 
item from the data provider for that database, converts it to a different type, and stores that converted 
data as an entry in the database prefetch cache. 

What this means is that the prefetch caches are not only populated at initialization, but during the life 
of the application. This understanding is required when thinking about setting the size of the prefetch 
caches. 

4.3.2 Understanding Prefetch Cache Configuration Files 

The prefetch cache configuration files can be found in the /App_Config/Prefetch  directory. Each 

database has its own prefetch cache configuration file (Core.config, Master.config, 

Web.config ) which are merged with the /App_Config/Prefetch/Common.config  file. 

Note that items, templates, and so on, are identified in the configuration files by their GUIDs. 

Configuration Elements 

¶ <configuration>  — This is the root node of the configuration file. 

¶ <cacheSize>  — This controls the maximum size of the prefetch cache. For example: 

<cacheSize>100MB</cacheSize> . 

¶ <item>  — This element tells Sitecore the specific item to load into the prefetch cache at 

application initialization. For example: <item desc="home">{110D559F - DEA5- 42EA-

9C1C- 8A5DF7E70EF9}</item> . 

¶ <template>  — This element tells Sitecore to cache all items based on a given template at 

application initialization  For example: <template desc="layout">{3A45A723 - 64EE-

4919 - 9D41- 02FD40FD1466}</template> . 

¶ <children>  — This element tells Sitecore to cache all of the children of the specified item. 

(For example: <children desc="main items">{110D559F - DEA5- 42EA- 9C1C-

8A5DF7E70EF9}</children> . 

¶ <childLimit>  – This defines the number of children to cache. If an item has more children 

than this number, Sitecore does not cache the children. For example: 
<childLimit>100</childLimit> . 

http://sdn.sitecore.net/upload/sitecore6/sc62keywords/cache_configuration_reference_us.pdf
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4.3.3 Prefetch Cache Recommended Practices 

This is a list of recommended practices that provide guidance when configuring the Sitecore Prefetch 
caches: 

¶ To take advantage of Sitecore Prefetch caching, you must configure it. The information that is 
in the default prefetch caching files is, in many cases, is not accurate. For example, the 
/App_Config/Prefetch/Master.config  file as several entries for html related controls. 

These controls are now stored in the Core database. 

¶ When configuring the size of the prefetch caches, remember that the prefetch caches are 
populated throughout the lifecycle of the application, and not just at application initialization. 

¶ Monitor the growth, size and eviction of the prefetch caches the same as you would the item 
and data caches. Refer to the Tuning Sitecore Caches  task above for more information. 

¶ It is recommended that the <setting 

name="ContentEditor.RenderCollapsedSections" value="false" />  be added 

to the /web.config  file. This is a hidden setting that is set to "true" by default. Keeping this 

setting as "true" (default) makes Sitecore load children of collapsed items into memory 
(cache) due to the Content Editor implementation + load children of their children due to the 
prefetching. This makes Sitecore load 2 extra levels of items, when for example: showing the 
Home item, and slowing down the operation. 
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4.4 Configuring Output (Rendering) Cache Guidelines 

Configuring HTML Output (Rendering) Cache Guidelines is not a task, but more of a primer on what 
the Sitecore output caching is, as well as recommended practices on how to configure and utilize 
them. 

We recommended that you read chapter 4, Output Caching, of the Sitecore Present Component 
Reference to gain a full understanding of Sitecore Output Caching. Refer to: 
http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20Reference.aspx 

4.4.1 Understanding the Output (Rendering) Cache 

Utilizing the Sitecore output caching can greatly improve the performance of a website. By taking the 
results of a rendering operation and displaying those results from memory, rather than executing the 
rendering code, the process is much faster. 

The Sitecore output caching is associated with each managed Web site. 

Sitecore output caching allows the developer to pick and choose which rendering components to 
cache, as well as VaryBy parameters that define rules on when those caches are to be evicted. This 
means that common page components such as headers and footers can be cached, while dynamic 
components such as news feeds can remain dynamic, all within the same resulting webpage. 

The default behavior of the layout engine is to not cache presentation components. To take 
advantage of the Sitecore output caching, presentation components must be configured properly. This 
section provides guidance and recommended practices on how to do so. 

The Sitecore output caching should not be confused with the ASP.NET page and fragment caching 
(implemented with the OutputCache  directive in Web forms and Web user controls). Developers 

should not use Sitecore output caching with ASP.NET page and fragment caching without an 
understanding of how to properly clear the ASP.NET caches after an operation such as publishing. 

4.4.2 Where to Configure Cache Settings and Which Cache Settings 
Apply 

Sitecore allows developers to define output cache settings in three places: 

¶ In the Caching section of the sublayout and rendering definition item. 

 

http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20Reference.aspx
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¶ In the properties of the presentation component, when you statically bind it to a layout or 
sublayout. 

 

¶ In declarative code: 

<sc:sublayout runat="server" renderingid="D366A65 - 54FF- 49B5- A57F-

2EBB9F426433%7d" placeholder="content" cacheable="true" varybydata="true"  

path="/layouts/Starter Kit/Sublayouts/Header Fixed.ascx" 

id="HeaderFixed"></sc:sublayout>  

¶ In the Caching section of the Control Properties dialog box, when you bind a presentation 
component to a placeholder in a layout details. 

 

The layout engine uses cache criteria defined in the Caching section of the definition item under two 
conditions: 

¶ When a developer statically binds a rendering to a layout or sublayout, Sitecore copies 
caching properties from the rendering definition item to the control (a static reference to the 
presentation component). Note, the caching properties must exist in the definition item for this 
to occur. If the layout or sublayout is statically bound prior to the caching properties being set 
in the rendering definition item, they are not copied. 
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¶ When layout details do not specify caching criteria for presentation components dynamically 
bound to placeholders. 

When you dynamically bind a rendering to a placeholder using layout details, cache settings explicitly 
defined in layout details override cache settings defined in the rendering definition item. Cache 
settings defined in the definition item apply only when no caching settings exist in the Caching 
section in the Control Properties dialog box. 

4.4.3 Output Caching Properties 

Presentation components that are cacheable have the following properties: 

¶ Cacheable — The Cacheable property defines whether or not the presentation component 
should be cached, regardless of what the VaryBy properties are set to. If false, the 
presentation component is invoked every time it is requested. If true, the first request the 
presentation component is invoked, and then it is retrieved from cache for all subsequent 
requests. If true and one or more VaryBy properties are true, then those VaryBy properties 
control when the presentation component is to be invoked or taken from cache. 

¶ VaryBy properties — The VaryBy properties provide control over when a presentation 
component is to be invoked or taken from cache. The VarBy properties only take effect if 
Cacheable is set to true. 

o VaryByData — Set to true for components that generate different output when used with 
different data sources. 

o VaryByDevice — Set to true for components that generate different output when used 
with different devices. 

o VaryByLogin — Set to true for components that generate different output for an 
authenticated vs. an unauthenticated user. Note, the layout engine treats all anonymous 
users as a single authenticated user. 

o VaryByParm — Set to true for components that generate a different output when 
different rendering parameters are passed in. 

o VaryByQueryString — Set to true for components that generate a different output when 
different query string parameters are passed in. 

o VaryByUser — Set to true for components that generate different output for different 
users. Note, to avoid excessive memory usage only use VaryByUser on solutions with a 
relatively small number of users. 

Note 
If you statically place renderings in layouts and sublayouts using Visual Studio, or another form of 
editor, you can manually set the caching properties. For example: <sc:sublayout 

runat="server" renderingid="D366A65 - 54FF- 49B5- A57F- 2EBB9F426433%7d" 

placeho lder="content" cacheable="true" varybydata="true" path="/layouts/Starter 

Kit/Sublayouts/Header Fixed.ascx" id="HeaderFixed"></sc:sublayout>  

4.4.4 Output Caching Recommended Practices 

This is a list of recommended practices that provides guidance when configuring the Sitecore Output 
caching: 

¶ Sitecore output caching can provide large gains in rendering performance by reducing CPU 
utilization required to invoke presentation components. To gain the most out of using output 
caching, insure that good coding practices are followed prior to making presentation 
components cacheable. 

¶ Make sure that the htmlCacheSize  property is large enough to cache all renderings. For 
more information, see the section Setting Initial Cache Values. 
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¶ Caching of a container (layout, placeholder, or sublayout) that contains child controls result in 
taking the entire rendering result of the container from cache on subsequent requests. This 
includes any child controls that exists within the container.  

¶ Use the stats.aspx page to monitor caching activity and rendering times for the presentation 
components. 

¶ Information on creating custom caching criteria can be found on the Sitecore Blog at: 
http://www.sitecore.net/Community/Technical-Blogs/John-West-Sitecore-
Blog/Posts/2011/05/Custom-Caching-Criteria-with-the-Sitecore-ASPNET-CMS.aspx 

http://www.sitecore.net/Community/Technical-Blogs/John-West-Sitecore-Blog/Posts/2011/05/Custom-Caching-Criteria-with-the-Sitecore-ASPNET-CMS.aspx
http://www.sitecore.net/Community/Technical-Blogs/John-West-Sitecore-Blog/Posts/2011/05/Custom-Caching-Criteria-with-the-Sitecore-ASPNET-CMS.aspx
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Chapter 5  

Tuning Procedures — IIS Settings 

Tuning Procedures – IIS Settings contains a series of tasks designed to check the 
configuration of the IIS web server. Proper configuration of IIS helps the Sitecore 
implementation run at its peak performance. 

This chapter contains the following sections: 

¶ Enable IIS HTTP keep-alive 

¶ IIS Expire Web Content Header 

¶ Enable IIS Static Content Compression 

¶ Enable IIS Dynamic Content Compression (Optional) 
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5.1 Enable IIS HTTP keep-alive 

Enabling the HTTP keep-alive reduces the number of connections required to be opened. If the HTTP 
keep-alive is disabled, a new connection is made for every requested object on a web page. 

5.1.1 Required Skills 

¶ A working IIS Manager. 

5.1.2 Symptoms 

¶ Constant high load times for requested pages. 

¶ Poor performance. 

5.1.3 Procedure 

To check if the HTTP keep-alive is enabled: 

1. Launch IIS Manager. 

2. Navigate to the site that you wish to check to see if the HTTP keep-alive is enabled. 

3. Double click HTTP Response Headers — located in the IIS grouping. 

4. In the Actions panel, click Set common headers... 

5.1.4 Understanding the Results 

The Set Common HTTP Response Headers dialog box appear. The following example shows that 
the HTTP keep-alive setting is enabled. 

 

5.1.5 Sitecore Recommendation 

Sitecore recommends that the IIS HTTP keep-alive is enabled. 

5.1.6 How to Solve 

To enable the HTTP keep-alive: 

1. Launch IIS Manager. 

2. Navigate to the site that you wish to enable the HTTP keep-alive. 
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3. Double click the HTTP Response Headers (located in the IIS grouping). 

4. In the Actions panel, click Set common headers... 

5. Select Enable HTTP keep-alive. 

6. Click OK. 
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5.2 IIS Expire Web Content Header 

The Expire Web content header (located in common HTTP Response headers) is how IIS determines 
whether or not to return a new version of the requested web page if the request is made after the 
web-page content has expired. IIS marks each web page before it's sent using the settings you 
provide for content expiration. The end-user's browser translates the expiration mark. 

By setting Expire Web content to something other than immediately, you can reduce second-access 
load times by 50 to 70 percent. This setting does not affect dynamically generated content. 

Please note that the following procedures are for IIS7.x. For information about how to enable the 
Expire Web content header in previous versions, refer to Microsoft's documentation. 

5.2.1 Required Skills 

¶ A working IIS Manager. 

5.2.2 Symptoms 

¶ Constant high load times for requested pages. 

¶ Poor performance. 

5.2.3 Procedure 

To check if the Expire Web content Header is enabled: 

1. Launch IIS Manager. 

2. Navigate to the site that you wish to check and see if the Expire Web content header is 
enabled. 

3. Double click the HTTP Response Headers (located in the IIS grouping). 

4. In the Actions panel, click Set common headers... 

5.2.4 Understanding the Results 

The Set Common HTTP Response Headers dialog box appears. The following example shows that 
the Expire Web content is enabled and set to After 7 days. 

 

5.2.5 Sitecore Recommendation 

Sitecore recommends that the Expire Web content be enabled, Set to "After" 30 days. 
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5.2.6 How to Solve 

To enable the Expire Web content Header: 

1. Launch IIS Manager. 

2. Navigate to the site that you wish to enable the Expire Web content header. 

3. Double click the HTTP Response Headers (located in the IIS grouping). 

4. In the Actions panel, click Set common headers... 

5. Select Expire Web content. 

6. Select After. 

7. Set the number of days to 30. 

8. Click OK. 
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5.3 Enable IIS Static Content Compression 

Enabling IIS static content compression static responses can be compressed and cached on disk 
across multiple requests, without degrading CPU resources. 

By default, static content compression is enabled in IIS. This task is designed as a check to see if it is 
in fact enabled. 

5.3.1 Required Skills 

¶ A working IIS Manager. 

5.3.2 Symptoms 

¶ Constant high load times for requested pages. 

¶ Poor performance. 

5.3.3 Procedure 

To check if Static content compression is enabled: 

1. Launch IIS Manager. 

2. Navigate to the site that you wish to check and see if Static content compression enabled. 

3. Double click the Compression icon (located in the IIS grouping). 

4. The Compression dialog box appears. The following example shows that static content 
compression is enabled. 

 

5.3.4 Sitecore Recommendation 

Sitecore recommends that you enable the IIS Static content compression setting. 

5.3.5 How to Solve 

To enable IIS Static content compression: 

1. Launch IIS Manager. 

2. Navigate to the site that you wish to check and see if Static content compression enabled. 

3. Double click the Compression icon (located in the IIS grouping). 

4. Select the Enable static content compression check box. 

5. Click Apply. 
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5.4 Enable IIS Dynamic Content Compression (Optional) 

Enabling dynamic content compression is labeled as optional, because its benefits depend on the 
availability of CPU resources. 

Dynamic content compression compresses responses for dynamic content, reducing bandwidth 
requirements.  Because dynamic content is compressed with every request / response, there is a 
trade-off of increased CPU utilization, so for systems that are already running at a high CPU utilization 
level dynamic content compression should not be enabled. 

A couple of interesting articles about the benefits of using dynamic compression, as well as how to set 
it up, can be found at: 

¶ http://weblogs.asp.net/owscott/archive/2009/02/22/iis-7-compression-good-bad-how-
much.aspx 

¶ http://www.west-wind.com/weblog/posts/2011/May/05/Builtin-GZipDeflate-Compression-on-
IIS-7x 

5.4.1 Required Skills 

¶ A working IIS Manager. 

5.4.2 Symptoms 

¶ Constant high load times for requested pages. 

¶ Poor performance. 

5.4.3 Procedure 

To check if Dynamic content compression is enabled, do the following: 

1. Launch IIS Manager. 

2. Navigate to the site that you wish to check and see if Dynamic content compression 
enabled. 

3. Double click the Compression icon (located in the IIS grouping). 

4. The Compression dialog box appears. The following example shows that the dynamic 
content compression is enabled. 

 

5.4.4 Sitecore Recommendation 

Sitecore recommends that IIS Dynamic content compression be enabled on systems where CPU 
utilization is not at a constant high level. 

http://weblogs.asp.net/owscott/archive/2009/02/22/iis-7-compression-good-bad-how-much.aspx
http://weblogs.asp.net/owscott/archive/2009/02/22/iis-7-compression-good-bad-how-much.aspx
http://www.west-wind.com/weblog/posts/2011/May/05/Builtin-GZipDeflate-Compression-on-IIS-7x
http://www.west-wind.com/weblog/posts/2011/May/05/Builtin-GZipDeflate-Compression-on-IIS-7x
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5.4.5 How to Solve 

To enable IIS Dynamic content compression: 

1. Launch IIS Manager. 

2. Navigate to the site that you wish to check and see if Dynamic content compression 
enabled. 

3. Double click the Compression icon (located in the IIS grouping). 

4. Select the Enable dynamic content compression check box. 

5. If the Enable dynamic content compression check box is grayed out, you need to add the 
dynamic compression module to IIS by going to Control Panel, Programs and Features, 
Turn Windows features on or off 

6. Click Apply. 
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Chapter 6  

Tuning Procedures — Sitecore Client 

Optimizations 

Tuning Procedures – Sitecore Client Optimizations contains a series of tasks 
designed to check the configuration, and recommended practices for the Sitecore 
client tools.  

Proper configuration, and the following of recommended practices, help insure that 
the Sitecore users experience optimal performance while using the Sitecore client 
tools. 

This chapter contains the following sections: 

¶ Check Long Running Validators 

¶ Check Excessive Item Versions 

¶ Check Excessive Items per Node 

¶ Miscellaneous Client Specific Optimizations 
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6.1 Check Long Running Validators 

Validators that take a long time to run can have a negative performance impact while using the 
Sitecore Content Editor.  This task is designed to look for those validation rules in question. 

6.1.1 Required Skills 

¶ A working knowledge of reading the Sitecore logs. 

6.1.2 Symptoms 

¶ Slow performance while using the Sitecore Content Editor. 

6.1.3 Procedure to Check Long Running Validation Rules 

Long running validation rules appear in the Sitecore logs with the following message: Long running 
operation: Running Validation Rules. To search for these messages you can either search for the 
above string using your favorite text editor, or by parsing the log file(s) with Sitecore Log Analyzer 
tool. 

To parse the log file(s) using Sitecore Log Analyzer: 

1. Launch Sitecore Log Analyzer. 

2. Use Select Location button to select log file(s) for parsing. 

3. Set String filter field to Long running operation: Running Validation Rules value. 

4. Press Analyze / Refresh* button. 

5. Go to Messages tab and check Warnings checkbox. 

6. Check the checkbox of the “* Long running operation” entry in the list of messages. 

6.1.4 Understanding the Results 

The output looks like this: 
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The above table shows that 6 warnings were produced due to long running validation rules. 
Unfortunately the log files do not give an indication of which validation rules are producing the 
warnings. 

6.1.5 Sitecore Recommendation 

Sitecore recommends long running validation rules be investigated and disabled to help increase 
performance while using the Sitecore Content Editor. 

6.1.6 How to Solve 

The process of finding out which validation rules are producing warnings is a bit trial and error. Here 
are some steps that can be taken to help identify those validation rules that could be the culprits: 

1. Look at any custom validation rules to see they are taking a long time to process. If so, 
disable them. 

2. Disable any standard validators, by removing them from the validation rules section of an 
item, that are not required. 

3. Some validators are declared in the web.config  file (for example, the Media library 

validator). 



CMS Performance Tuning Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2017 Sitecore. All rights reserved.  

Page 47 of 59 

6.2 Check Excessive Item Versions 

Keeping around excessive numbers of versions for an item or items can have a negative impact on 
performance. Especially performance related to viewing the content tree in the content editor, as well 
as affecting the amount of memory that is utilized by caching. 

As the numbers of versions grow, so does the amount of time required to process all of the versions. 
For example, when opening up an item to be viewed or edited within the content editor not only is the 
version that you are looking at being processed, but so are all of the other versions related to that 
item. 

This task is designed to look for excessive versioning, as well as a pointer to a shared source module 
to manage versions. 

6.2.1 Required Skills 

¶ A working knowledge the Sitecore content editor. 

¶ Experience installing and configuring shared source modules. 

6.2.2 Symptoms 

¶ Slow performance while using the Sitecore Content Editor. 

6.2.3 Procedure to check excessive Item versions 

Excessive numbers of versions is usually found on items that are the most heavily modified (for 
example, the home page of a site). Talk with the content authors to find out which pages are seeing 
the most activity — modification. 

1. Launch the Sitecore Content Editor. 

2. In the content tree, navigate to the items that are in question. 

3. In the upper right hand corner of the item, there is a drop down showing the number of 
versions for the item being viewed: 

 

4. Note the number of versions for the item (anything over 10 should be flagged as excessive). 

5. Repeat the process for other items in question. 
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6.2.4 Understanding the Results 

The output looks like this: 

 

This screen shows that there are currently 6 versions for this Home page being stored. 

6.2.5 Sitecore Recommendation 

Sitecore recommends that you store 10 or fewer versions of a particular item. However, this number 
may be higher based on company policy that dictates that number of required versions to be stored. 
Also, Sitecore recommends running the Version Manager shared source module to maintain the 
number of stored versions. 

6.2.6 How to Solve 

To manage the number of versions stored, there is a Version Manager shared source available at: 
http://trac.sitecore.net/VersionManager  

http://trac.sitecore.net/VersionManager
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6.3 Check Excessive Items per Node 

The structure of the content tree should be well balanced without having an excess number of items 
under any parent node. This number should not exceed 100, so careful planning is required to provide 
structure through the use of folders for organization. 

Excessive numbers of items, beyond 100, under any parent node decreases the performance 
perspective for a Sitecore user navigating the content tree in the Content Editor. 

This task is designed to look for excessive items in the content tree. 

6.3.1 Required Skills 

¶ A working knowledge the Sitecore content editor. 

6.3.2 Symptoms 

¶ Slow performance while using the Sitecore Content Editor. 

6.3.3 Procedure to Check for Excessive Items per Node 

Searching for nodes that have in excess of 100 items can be either treated as a manual task, or a 
script can be created to automate the process. To manually search for nodes with an excessive 
number of items: 

1. Launch the Sitecore Content Editor. 

2. In the content tree, expand all nodes. 

3. Look for any node that has in excess of 100 items. 

To search for nodes with an excessive number of children with a script, create a script that 
recursively traverses the content tree from a given home node. For example: 

using  System;  

using  System.Collections.Generic;  

using  System.Linq;  

using  System.Web;  

using  System.Web.UI;  

using  System.Web.UI.WebControls;  

using  Sitecore.Data.Items;  

using  Sitecore.Collections;  

 

namespace  Sitecore.Utilities  

{  

  public  partial  class  NodeCount  : System.Web.UI.Page  

  {  

    protected  void  Page_Load( object  sender, EventArgs  e)  

    {  

      Item homeItem = 

Sitecore.Configuration.Factory.GetDatabase( "master" ).Items[ "/sitecore/content/home" ];  

      getNumberOfChildren(homeItem);  

    }  

 

    private  void  getNumberOfChildren(Item node)  

    {  

      ChildList children = new ChildList(node);  

      foreach  (Item child in  children)  

      {  

        if  (child.HasChildren && child.Children.Count >= 100)  

        {  

          Response.Write( "Node: "  + child.Name + " -  "  + child.Children.Count + "<br 

/>" );  

          getNumberOfChildren(child);  

        }  

        els e 

        {  

          Response.Write( "<br />" );  
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        }  

      }  

    }  

  }  

}  

 

6.3.4 Understanding the Results 

The results depend on the number of nodes found with greater than 100 items. Any node that has 
greater than 100 items should be flagged as needing attention. 

6.3.5 Sitecore Recommendation 

Sitecore recommends that 100 or fewer items under any parent node. 
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6.4 Miscellaneous Client Specific Optimizations 

Presented here are a series of optimizations that improve performance for the Sitecore clients. 

This task explains how to add this setting to the web.config  file. 

6.4.1 Required Skills 

¶ A working knowledge of the Sitecore web.config file. 

6.4.2 Symptoms 

¶ Slow performance while using the Sitecore Content Editor. 

6.4.3 ContentEditor.RenderCollapsedSections setting 

The ContentEditor.RenderCollapsedSections  setting is a hidden setting in the 

/web.config file , which by default is true. Adding <setting 

name="ContentEditor. RenderCollapsedSections" value=" false" />  to the 

/web.config  file improves client performance, especially with large content trees. 

Also, setting the value to false prevents the prefetch caching from adding specified children into 
memory twice. 

Do Not Show Standard Fields in the Content Editor. 

By disabling the viewing of Standard Fields in the Content Editor, performance improves because 
Sitecore does not have to render as much information per item. 

6.4.4 Make Sure that Content Authors Never Use Full Publish 

Full Publish, or publishing all items, is very resource intensive. During at full publish, performance 
degradation is possible for any Sitecore user currently working on the system during the operation. It 
is highly recommended that Smart or Incremental publishing be used instead. 

6.4.5 ContentEditor.CheckHasChildrenOnTreeNodes setting 

This setting determines if the editor uses the HasChildren  method when rendering a tree node. Set 

this value to false to increase performance.  
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Chapter 7  

Tuning Procedures — Sitecore Miscellaneous 

Content Delivery Server Optimizations 

This chapter contains a series of tasks designed to check the configuration, and 
recommended practices for the content delivery server(s).  

The optimizations shown in this chapter are designed to disable functionality that is 
typically used for diagnostics, and/or content management functionality.  By disabling 
these features, CPU process time is recovered. 

Proper configuration, and the following of recommended practices, helps insure that 
the Sitecore content delivery server(s) run at their optimal performance levels. 

This chapter contains the following sections: 

¶ Disable WebDAV 

¶ Disable Performance Counters 

¶ Disable Memory Monitor 
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7.1 Disable WebDAV 

WebDAV allows users of Web clients such as browsers to manage files on Web servers using Web 
protocols such as HTTP or HTTPS. With WebDAV, users can drag-and-drop files between the 
Windows desktop and the browser. 

Disabling WebDAV on the content delivery server(s) makes sense as it is not expected to be used in 
these environments. 

7.1.1 Required Skills 

¶ A working knowledge of Sitecore configuration files. 

7.1.2 Symptoms 

¶ Unnecessary log files being created on the content delivery server. 

7.1.3 Procedure to Disable WebDAV 

To disable WebDAV: 

1. Open the web.config  file in an editor — located in the web root directory. 

2. Navigate to <log4net/> section and remove the WebDAV references. 

   <log4net>  

   <appender  name="LogFileAppender"  type ="log4net.Appender.SitecoreLogFileAppender, 

Sitecore.Logging">   

   <file  value ="$(dataFolder)/logs/log.{date}.txt"  />   

   <appendToFile  value ="true"  />   

   <layout  type ="log4net.Layout.PatternLayout">   

   <conversionPattern  value ="%4t %d{ABSOLUTE} % - 5p %m%n" />   

   </ layout >  

   </ appender >  

   <! -- <appender name="WebDAVLogFileAppender" type="log4net.Appender.SitecoreLogFileAppender, 

Sitecore.Logging">  

  <file value="$(dataFolder)/logs/WebDAV.log.{date}.txt" />  

  <appendToFile value="true" />  

  <layout type="log4net.Layout.PatternLayout">  

  <conversionPattern value="%4t %d{ABSOLUTE} % - 5p %m%n" />  

  </layout>  

  </appender> -- >  

  <root >  

  <priority  value ="INFO"  />   

  <appender - ref  ref =" LogFileAppender "  />   

  </ root >  

  <! -- <logger name=" Sitecore.Diagnostics.WebDAV" additivity="false">  

  level value="INFO" />  

  <appender - ref ref="WebDAVLogFileAppender" />  

  </logger> -- >  

  </ log4net >  

 

3. Navigate to <system.webServer/> section and remove the WebDAV references. 

   <!--<remove name="WebDAVModule" />--> 

   <!— 
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<add name="WebDAVRoot" path="*" verb="OPTIONS,PROPFIND" modules="IsapiModule" 

scriptProcessor="%windir%\Microsoft.NET\Framework\v2.0.50727\aspnet_isapi.dll" resourceType="Unspecified" 

preCondition="classicMode,runtimeVersionv2.0,bitness32" /> 

   <add name="WebDAVRoot64" path="*" verb="OPTIONS,PROPFIND" modules="IsapiModule" 

scriptProcessor="%windir%\Microsoft.NET\Framework64\v2.0.50727\aspnet_isapi.dll" resourceType="Unspecified" 

preCondition="classicMode,runtimeVersionv2.0,bitness64" /> 

   <add verb="*" path="sitecore_webDAV.ashx" type="Sitecore.Resources.Media.WebDAVMediaRequestHandler, 

Sitecore.Kernel" name="Sitecore.WebDAVMediaRequestHandler" /> 

--> 

4. Navigate to <httpHandlers/> section and remove the WebDAV references. 

   <!-- 

   <add verb="*" path="sitecore_webDAV.ashx" type="Sitecore.Resources.Media.WebDAVMediaRequestHandler, 

Sitecore.Kernel" /> 

   --> 

5. Save your changes. 

6. Finally, you can delete the Sitecore.WebDAV.config  file from the 

webroot/App_Config/Include  directory. 

7.1.4 Sitecore Recommendation 

Sitecore recommends disabling WebDAV on the production content delivery servers to reduce the 
number of log files being created. Also, Sitecore recommends disabling WebDAV on the content 
management servers if the WebDAV functionality is not being used. 
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7.2 Disable Performance Counters 

Performance counters create a minor overhead and is recommended to be enabled only when 
running in troubleshooting mode. 

7.2.1 Required Skills 

¶ A working knowledge of Sitecore configuration files. 

7.2.2 Symptoms 

¶ Slight overhead required to maintain the performance counters. 

7.2.3 Procedure to Disable Performance Counters 

To disable Performance Counters: 

1. Open the web.config  file in an editor — located in the web root directory. 

2. Navigate to <setting name=òCounters.Enabledò value=òtrueò /> section and set 

the value to false. 

  <setting  name=" Counters.Enabled "  value =" false "  />   

    

3. Save your changes. 

7.2.4 Sitecore Recommendation 

Sitecore recommends disabling Performance Counters on the production content delivery servers to 
reduce the overhead required to maintain the counters. 
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7.3 Disable Memory Monitor 

Memory Monitor creates frequent CPU spikes and should only be enabled when troubleshooting 
memory related issues. 

7.3.1 Required Skills 

¶ A working knowledge of Sitecore configuration files. 

7.3.2 Symptoms 

¶ Frequent CPU spikes. 

7.3.3 Procedure to Disable Memory Monitor 

To disable WebDAV: 

1. Open the web.config  file in an editor (located in the web root directory). 

2. Navigate to <hooks/> section and comment out the <hook 

type=òSitecore.Diagnostics.MemoryMonitorHook, Sitecore.Kernelò />. 

       <hooks > 

      <hook  type ="Sitecore.Diagnostics.HealthMonitorHook, Sitecore.Kernel" />  

      <! -- <hook type="Sitecore.Diagnostics.MemoryMonitorHook, Sitecore.Kernel">  

        <param desc="Threshold">800MB</param>  

        <param desc="Check interval">00:00:05</param>  

        <param desc="Minimum time between log entries">00:01:00</param>  

        <ClearCaches>false</ClearCaches>  

        <GarbageCollect>false</GarbageCollect>  

        <AdjustLoadFactor>false</AdjustLoadFac tor>  

      </hook> -- > 

    </ hooks > 

3. Save your changes. 

7.3.4 Sitecore Recommendation 

Sitecore recommends disabling the Memory Monitor in production environments, and only enabling it 
for troubleshooting memory related issues. 
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Chapter 8  

Tuning Procedures — Sitecore Search 

This chapter contains a series of tasks designed to check the configuration and 
recommended practices for Sitecore Search on content delivery servers. 

The optimizations shown in this chapter are designed to disable functionality that is 
typically used for diagnostics. By disabling these features, CPU process time is 
recovered and overhead is reduced. 

Proper configuration, and the following of recommended practices, helps ensure that 
Sitecore content delivery servers and Sitecore-based Search run at their optimal 
performance levels. 

This chapter contains the following sections: 

¶ Disable Bucket Debug 

¶ More Information 
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8.1 Disable Bucket Debug 

If bucket debugging is enabled, every query executed against an item bucket is written to the search 
log file. 

8.1.1 Required Skills 

¶ A working knowledge of Sitecore configuration files. 

8.1.2 Symptoms 

¶ Large search log files filled with search queries 

8.1.3 Procedure to Disable Bucket Debug 

¶ Open the App_Config/Include/Sitecore.Buckets .config  file in an editor. 

¶ Set the BucketConfiguration.EnableBu cketDebug  setting to false: 

<setting  name=" BucketConfiguration.EnableBucketDebug "  value =" false "  />  

¶ Save your changes. 

8.1.4 Sitecore Recommendation 
Sitecore recommends disabling bucket debug logging on content delivery servers to 
reduce log file size, mitigate pollution of the log files, and help minimize any overhead 
required to write and maintain log files. 
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8.2 More Information 

For more information about Sitecore Search and how to properly configure search operations for your 
environment, see the following documents on SDN: 

¶ Developer's Guide to Item Buckets and Search 

¶ Sitecore Search Scaling Guide 

¶ Sitecore Search Admin Guide  

 


