
Sitecore CMS 7.0
Sitecore MVC Developer's Reference Guide Rev: 27 August 2013

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Sitecore CMS 7.0

Sitecore MVC Developer's
Reference Guide
A developers guide to MVC in Sitecore

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 2 of 20

Table of Contents

Chapter 1 Introduction .. 3
1.1 Overview ... 4

1.1.1 What is ASP.NET MVC 3 .. 4
1.1.2 Prerequisites for Sitecore MVC Installation .. 4
1.1.3 How to Install Sitecore MVC ... 5

Chapter 2 Sitecore MVC Pipelines and Request Handling .. 6
2.1 MVC and the HttpBeginRequest Pipeline ... 7

2.1.1 The PageDefinition Class .. 7
2.1.2 Sitecore MVC Context Objects ... 8

RequestContext ... 8
PageContext... 8
PlaceholderContext .. 8
RenderingContext .. 8

2.2 Changes to Existing Pipelines... 9
2.2.1 Initialize Pipeline.. 9
2.2.2 HttpBeginRequest Pipeline ... 9

2.3 MVC Specific Pipelines ... 10
2.3.1 RequestBegin .. 10
2.3.2 RequestEnd ... 10
2.3.3 CreateController .. 10
2.3.4 ActionExecuting... 10
2.3.5 ActionExecuted ... 10
2.3.6 ResultExecuting .. 10
2.3.7 ResultExecuted ... 10
2.3.8 Exception ... 10
2.3.9 GetPageItem ... 11
2.3.10 BuildPageDefinition ... 11
2.3.11 GetPageRendering ... 11
2.3.12 GetRenderer .. 11
2.3.13 GetModel ... 11
2.3.14 RenderPlaceholder.. 11
2.3.15 RenderRendering .. 11

2.4 Sitecore MVC Request Handling .. 12
2.4.1 MVC Request Transferring ... 12
2.4.2 Placeholder Processing .. 12
2.4.3 Rendering Processing ... 12
2.4.4 Item Renderings .. 12
2.4.5 Inner Renderings ... 13

Chapter 3 View Renderings ... 14
3.1 Renderings .. 15

Chapter 4 MVC Routing ... 16
4.1 MVC Routes .. 17

Chapter 5 Additional Considerations for Sitecore MVC ... 19
5.1 Additional Considerations for Sitecore MVC ... 20

5.1.1 Sitecore Data Templates ... 20
5.1.2 Debugging ... 20
5.1.3 Conditional Renderings ... 20

Sitecore MVC Developer's Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 3 of 20

Chapter 1

Introduction

This chapter gives a brief overview of Sitecore MVC features and describes how to
prepare your development environment and install Sitecore MVC.

This chapter describes the prerequisites for installing Sitecore MVC as well as how to
install it.

This manual contains the following chapters:

 Chapter 1 — Introduction
This chapter describes how to install Sitecore MVC.

 Chapter 2 — Sitecore MVC Pipelines and Request Handling
This chapter describes how Sitecore MVC integrates with ASP.NET and the Sitecore
pipeline processors. It also discusses the important classes that are created during
pipeline processing and that you can use to retrieve information about the current
request.

 Chapter 3 — View Renderings
This chapter describes the MVC View Renderings.

 Chapter 4 — MVC Routing
This chapter describes MVC Routing and shows you how to map URLs by registering

routes in the Global.asax module.

 Chapter 5 — Additional Considerations for Sitecore MVC
This chapter contains some additional details about what has been added to Sitecore
for MVC support.

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 4 of 20

1.1 Overview

Sitecore MVC in Sitecore 7.0 allows ASP.NET MVC 3 to be a first class rendering engine in Sitecore.
While some support for ASP.NET MVC was available in earlier versions, Sitecore 7.0 provides access
to much more ASP.NET MVC 3 functionality.

Both ASP.NET WebForms and MVC are supported and can be mixed, although a single request must
be rendered by either WebForms or MVC.

The secondary goal of Sitecore MVC is to provide a powerful, flexible and extendable API for
controlling the rendering process.

Please note that unless explicitly specified the classic Sitecore rendering engine is unaffected.

Sitecore MVC is not enabled in a standard Sitecore installation. Once you have installed Sitecore 7.0,
you can follow a few simple steps to enable Sitecore MVC.

For more information about installing Sitecore MVC, see the sections Prerequisites for Sitecore MVC
Installation and How to Install Sitecore MVC.

There are three important aspects to understanding how to implement MVC in Sitecore. These are
discussed in later sections of this document. These aspects are how Sitecore MVC integrates into the

HttpRequestBegin pipeline, how to create MVC 3 View Renderings, and understanding how to use

MVC Routing to manage URLs.

1.1.1 What is ASP.NET MVC 3

ASP.NET MVC 3 is an implementation of a long-standing software architecture design pattern known
as the Model-View-Controller pattern. Implementations of this design pattern have been used in
software development and web development frameworks for many years, on many different
platforms.

In the Model-View-Controller design pattern, the three main components are structured as follows:

 The Model is a class or set of classes that represent the data that your application uses.
These classes also contain application logic for managing this data.

 The View consists of presentation components that determine how data will be presented in
the application’s user interface.

 The Controller is a class or set of classes that receive requests from the user and execute
application logic to request data from the Model and select which Views should be used to
display this data.

For developers who are new to ASP.NET MVC 3, it is recommended that you use the resources
available from Microsoft to learn more about the basics of working with this web application
framework. This document focuses on information that is specific to integrating ASP.NET MVC 3 with
a Sitecore website.

1.1.2 Prerequisites for Sitecore MVC Installation

Microsoft MVC 3 requires the .NET Framework 4.5 and you must run your Sitecore installation with a
.NET Framework 4.0 application pool. Microsoft Visual Studio 2010 or Visual Web Developer 2010
Express is also required.

Download and install the Microsoft MVC 3 Web Platform Installer from
http://www.microsoft.com/web/gallery/install.aspx?appid=MVC3

This installs the MVC 3 project templates for Visual Studio.

http://www.microsoft.com/web/gallery/install.aspx?appid=MVC3

Sitecore MVC Developer's Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 5 of 20

1.1.3 How to Install Sitecore MVC

Sitecore MVC runs on Sitecore 6.6 or later.

To install Sitecore MVC:

 Install Sitecore 7.0. The Sitecore 7.0 Installer has new options that help you install support for
MVC. For complete installation instructions, see the Sitecore CMS 7.0 Installation Guide.

i) In the IIS Web Site dialog box, use the Advanced button to access the Application Pool
settings:

ii) In the IIS Advanced Settings dialog box, make sure that the Enable Sitecore ASP.NET
MVC integration checkbox is checked and that you have selected the .NET 4.0 runtime:

 If you are doing a manual installation or you did not set these options during your Sitecore 7.0
installation, you can use the Microsoft Windows IIS Manager tool to verify or set the
application pool for your new Sitecore web site to .NET Framework 4.0.

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 6 of 20

Chapter 2

Sitecore MVC Pipelines and Request Handling

This chapter discusses how Sitecore MVC integrates with the ASP.NET and Sitecore
pipeline processors. It also discusses important classes that are created during
pipeline processing and are available to retrieve information about the currently
executing request.

 MVC and the HttpBeginRequest Pipeline

 The PageDefinition Class

 Sitecore MVC Context Objects

 Changes to Existing Pipelines

 MVC Specific Pipelines

 Sitecore MVC Request Handling

Sitecore MVC Developer's Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 7 of 20

2.1 MVC and the HttpBeginRequest Pipeline

Sitecore MVC hooks into the HttpBeginRequest pipeline and redirects to the MVC rendering

engine either when an MVC route is matched or the layout file is an MVC view — as determined by

the MvcSettings. ViewExtensions property. The logic is performed by the pipeline processors

TransferRoutedRequest (route match) and TransferMvcLayout (MVC view).

For more information about MVC routing, see the section
MVC Routing.

During MVC processing, Sitecore MVC builds up an in-memory model that represents the high-level

rendering information in Sitecore. This is called the PageDefinition. The PageDefinition

represents all the different ways to respond to the current request; much in the same way that a
standard Sitecore presentation layout definition for an item can contain multiple rendering collections
for different devices.

The PageDefinition is not only tied to devices. Other properties might influence which response

should be sent to the caller. Also the response might not even be HTML. It could just as well be JSON
or XML.

The class that encapsulates the information needed to generate the response is called

PageContext. To generate the actual response, an MVC view (IView) is used. This view is a

property of the PageContext and is called PageView.

An incoming request is handled by Sitecore MVC in the following manner:

 Create a PageContext.

 Determine the requested item.

 Determine the relevant controller to invoke.

 Build the PageDefinition and assign it to the PageContext.

 Select the root rendering to use for generating the response (typically the layout assigned to
the requested item).

 Wrap an IView around the root rendering and store it in PageContext.PageView.

 Pass the PageView to the ASP.NET MVC runtime for rendering the response to the client.

Because all of this work is handled by pipeline processors this architecture is pluggable and
extensible.

As part of generating its output, the root rendering will typically call the

Html.Sitecore().Placeholder extension method. This method renders the renderings from the

PageDefinition that corresponds to the specified placeholder name.

There are rendering support methods belonging to the Html.Sitecore() object. These include the

Field method which invokes the standard Sitecore RenderField pipeline and methods for

rendering MVC views, XSLT renderings, and other types of presentation components, directly.

2.1.1 The PageDefinition Class

The PageDefinition holds high-level information about all the devices, layouts and renderings for

the requested item. The PageDefinition is built as one of the very first actions during an MVC

request. The PageDefinition is built by the BuildPageDefinition pipeline.

The PageDefinition contains a list of Rendering objects. One of these is used as the root

rendering for generating the actual response (HTML, JSON, or XML). The selection takes place in the

GetPageRendering pipeline and the output of the selected rendering is generated in the

RenderRendering pipeline.

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 8 of 20

Most renderings are rendered by using the Renderer property of the Rendering object. A

Renderer is an object that knows how to render a specific type of Rendering.

A Rendering can be thought of as the definition of what should be rendered — a MVC view, an

XSLT, static text, or other presentation information — and the Renderer as an object that knows

how to transform that definition to the format requested by the client, for example, HTML, JSON or
XML.

The RenderRendering pipeline handles caching, context, and more, but for the actual rendering of

the output, it typically just uses the rendering’s Renderer property. Examples of renderers include

ViewRenderer, XsltRenderer, ItemRenderer. All renderers derive from the Renderer

abstract base class.

The Renderer class contains a single method — Render()— that must be implemented by custom

renderers.

2.1.2 Sitecore MVC Context Objects

There are several context objects that are created during the processing of a Sitecore MVC request.
These context objects can be used to access information about the state of the request that is
currently being currently executed.

All the context classes have static properties to get the current instance:

 Current —tries to get the current context and throws an exception if the calling code is not

inside a context of the requested type.

 CurrentOrNull — tries to get the current context and returns null if the calling code is not

inside a context of the requested type.

The RequestContext class does not have these properties. However, the extension methods

Current() and CurrentOrNull() can be used instead

RequestContext

The RequestContext is an MVC class that holds information about the current request, including

URL, form values, user, and route. It can be accessed using the PageContext.RequestContext

property.

PageContext

The PageContext object holds information about the page being built. It includes the requested item,

the current device, the PageDefinition, and the view that is used to render the response

(PageView).

PlaceholderContext

The PlaceholderContext keeps track of the current placeholder information. This is used to

support nested placeholders.

RenderingContext

The RenderingContext keeps track of the current rendering and the associated data source/item.

Sitecore MVC Developer's Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 9 of 20

2.2 Changes to Existing Pipelines

2.2.1 Initialize Pipeline

Sitecore MVC installs three processors in the initialize pipeline.

1. InitializeGlobalFilters — This processor sets up hooks in the MVC global filters

(ActionExecuting, ActionExecuted, ResultExecuting, ResultExecuted and

Exception), so that these events can be hooked into using Sitecore pipelines

For more information, see the section MVC Specific Pipelines.

2. InitializeControllerFactory — This processor installs a custom controller factory

(IControllerFactory) into the MVC runtime to facilitate greater control over MVC request

handling and controller creation.

3. InitializeRoutes — Set up the default Sitecore route handler (fall-through:

{*pathInfo}) and decorate existing routes with Sitecore specific route keys (

For more information, see the section MVC Routes.

2.2.2 HttpBeginRequest Pipeline

Sitecore MVC installs some processors in the HttpRequest pipeline:

1. TransferRoutedRequest — This processor is placed before the LayoutResolver

processor. If the request matches a route in the MVC route table, the pipeline is aborted
causing the MVC request handler to take over. Only custom routes are considered. The

Sitecore fall-through route ({*pathInfo}) is ignored by this processor — otherwise all

requests would match and be processed by MVC.

2. TransferMvcLayout — This processor is placed after the LayoutResolver processor. If

the resolved layout file name has an extension matching one of the extensions specified in

the MvcSettings.ViewExtensions setting, the pipeline is aborted causing the MVC

request handler to take over.

3. TransferControllerRequest — This processor is placed after the

TransferMvcLayout processor. If no layout has been resolved, the Controller field of

the current item is inspected. If it contains a value, the pipeline is aborted causing the MVC
request handler to take over. The specified controller is then responsible for rendering the
item.

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 10 of 20

2.3 MVC Specific Pipelines

Note that in the configuration file, the names of all MVC specific pipelines start with “mvc.” to avoid
name clashes with the standard Sitecore pipelines.

2.3.1 RequestBegin

This is run as the first action of an MVC request — after it has been passed down from the main
HttpRequest pipeline.

A PageContext is created and assigned to the current thread.

If the request is a form post, the associated form handler (if any) is executed

For more information, see the section on forms.

2.3.2 RequestEnd

This is run as the last action in an MVC request.

We do not currently do anything in this pipeline.

2.3.3 CreateController

This processor is called by the SitecoreControllerFactory to create a controller for the current

route selected by the MVC request handler.

If the requested item (PageContext.Item) specifies a controller (in the __Controller Name

field), this controller is instantiated and returned. Otherwise an instance of the default

SitecoreController is returned.

2.3.4 ActionExecuting

This processor executes before an MVC controller action is executed.

We do not currently do anything in this pipeline.

2.3.5 ActionExecuted

This processor executes after an MVC controller action is executed.

We do not currently do anything in this pipeline.

2.3.6 ResultExecuting

This processor executes before an MVC result is executed.

We do not currently do anything in this pipeline.

2.3.7 ResultExecuted

This processor executes after an MVC result is executed.

We do not currently do anything in this pipeline.

2.3.8 Exception

This processor executes after the MVC runtime catches an unhandled exception.

We do not currently do anything in this pipeline.

Sitecore MVC Developer's Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 11 of 20

If a custom processor is added to this pipeline, it should set the

ExceptionContext.ExceptionHandled property on the ExceptionArgs object that is handed

to the processor. Otherwise, Sitecore MVC will perform standard error handling.

2.3.9 GetPageItem

This pipeline resolves the item that was requested using route information. If the item cannot be

resolved from the route, Context.Item is used.

For more information, see the section MVC Routes.

2.3.10 BuildPageDefinition

This pipeline builds the initial PageDefinition by typically using the XML based layout definition of

the Renderings field on the page item.

2.3.11 GetPageRendering

The pipeline selects the Rendering to use as the root rendering of the page for creating the output of

the current request.

Currently, the root rendering is selected based solely on the current device —

PageContext.Device.

2.3.12 GetRenderer

This pipeline transforms an abstract rendering definition — Rendering — into an object that can

render output back to the client — Renderer.

2.3.13 GetModel

This pipeline creates the model object to use when rendering an MVC view. This is typicallyAPS.NET

MVC 3 Razor. If no model is returned by this pipeline, the view receives an instance of EmptyModel

to trigger a meaningful error message in case the .cshtml file contains the @model directive and

therefore expects a model.

2.3.14 RenderPlaceholder

This pipeline is called as part of the Html.Sitecore().Placeholder extension method. It

handles nested placeholders, if applicable.

By default, the pipeline finds all renderings matching the specified placeholder name in the current

PageDefinition and renders them. Any child renderings are only rendered if the rendering

explicitly renders them — typically by calling Html.Sitecore().Inner().

2.3.15 RenderRendering

The pipeline renders the specified rendering. This pipeline handles caching and also sets up the

IRenderingContext for accessing the renderings source item and supporting nested renderings.

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 12 of 20

2.4 Sitecore MVC Request Handling

2.4.1 MVC Request Transferring

Sitecore MVC may transfer request processing to the ASP.NET MVC rendering engine in two

scenarios. Both are detected and handled in the httpRequestBegin pipeline by custom processors.

1. If the request matches an MVC route the request is transferred to MVC after the Sitecore
context has been set up, but before the Sitecore layout has been resolved.

2. After the Sitecore layout has been resolved, its file extension is examined and if it matches

one of the extensions specified in the MvcSettings.ViewExtensions setting, the request

is transferred to MVC.

3. If no layout is associated with the current item, but the item has a controller specified (in the
Controller field), the request is transferred to MVC.

If none of these conditions are met, the request is handled as a WebForms request.

2.4.2 Placeholder Processing

The Html.Sitecore().Placeholder extension method renders the contents of the specified

placeholder. This processing is done in the pipeline RenderPlaceholder, making it possible to

modify output on a placeholder level.

2.4.3 Rendering Processing

When a rendering is being rendered, the RenderRendering pipeline is executed. This allows

developers to modify the output of a rendering. For example, the output can be validated for HTML
standards compliance.

The Page Editor can use this pipeline to augment the output with Page Editor specific tags.

2.4.4 Item Renderings

Sitecore MVC introduces the concept of item renderings. An item rendering is a new type of rendering
that renders the item based on the rendering’s data source property. The item is not rendered using

the Renderings field, but rather the Renderer field.

An example of using item renderings might be frequently changing information on a Home page. On

the Home item, the user adds an item rendering to the layout definition. The data source for the item

renderings is set to a specific Spot item. The Renderer field of the Spot item contains a reference

to the Spot1 rendering. When the Home item is rendered, the Renderer field of the Spot item is

parsed and the rendering(s) it specifies are rendered; in this case the Spot1 rendering.

The elements of an item rendering do not have to point to Sitecore renderings. By default, if an
element does not point to a rendering in Sitecore, it is assumed that the element should be rendered

by an MVC view. The view is resolved using a combination of the element name and the path and

folder properties.

Sitecore MVC Developer's Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 13 of 20

The following is an example of an item rendering:

<modes>

 <mode name="mobile" screen-size="small">

 <view path="spots/spot" color="red">

 <text>

 <header>Header: {{:title}}</header>

 <text>

 <![CDATA[<div>This is embedded HTML. Value of 'text' field is:

 {{:text}}</div>]]>

 </text>

 <field name="title" cachekey="{{:__style}}" cache_timeout="00:03:02"

 cac="1"/>

 <field datasource="/sitecore/content/home" vbd="1">{{:title}}</field>

 </text>

 </view>

 <copyright id="{493B3A83-0FA7-4484-8FC9-4680991CF743}"/>

 <spot folder="spots" color="{{:__style}}"/>

 </mode>

</modes>

2.4.5 Inner Renderings

A Rendering consists of a recursive data structure of renderings. Each rendering may contain any

number of nested renderings that are specified by the ChildRenderings property.

The child renderings of a rendering are also called inner renderings and can be rendered using the

Html.Sitecore().ChildRenderings() method in an ASP.NET MVC 3 Razor view. In the

future, there will also be an XSLT function for rendering inner renderings.

Inner renderings are useful for reuse of rendering elements. The outer rendering encapsulates the
inner renderings and as such may adorn them. This idea is similar to placeholders in Xml Controls.

Since inner renderings are just renderings it will become possible to render a Razor view inside an
XSLT rendering.

There is no UI support for inner renderings and they are not supported in WebForms.

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 14 of 20

Chapter 3

View Renderings

This chapter discusses MVC View Renderings.

This chapter contains the following sections:

 Renderings

Sitecore MVC Developer's Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 15 of 20

3.1 Renderings

MVC uses a different set of controls to render than ASP.NET WebForms. As such, not all Sitecore
renderings are supported.

The supported rendering types are:

 Content rendering — static text

 Controller rendering — executes MVC controller and outputs result

 Item rendering — executes the renderings specified by the item

 Method Rendering

 Url Rendering

 View Rendering — MVC View

 Xslt Rendering

The following renderings are not supported:

 WebControl

 Sublayout

Usually Sublayouts can be converted to View renderings easily.

MVC is reusing the Sitecore Data templates for XSLT, URL and Method renderings, but developers

should be aware that the renderer classes in MVC do not inherit from WebControl but inherit from
Renderer.

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 16 of 20

Chapter 4

MVC Routing

This chapter discusses MVC Routing and shows how to map URLs by registering

routes in the Global.asax module.

This chapter contains the following sections:

 MVC Routes

Sitecore MVC Developer's Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 17 of 20

4.1 MVC Routes

Sitecore uses the MVC route table to determine which requests to send to the MVC runtime for
processing.

The route table is typically set up in global.asax and Sitecore provides a set of custom route

values that can be used to augment the routes with Sitecore specific information.

The default global.asax in an ASP.NET MVC 3 project contains this code:

public class MvcApplication : System.Web.HttpApplication

 {

 public static void RegisterGlobalFilters(GlobalFilterCollection filters)

 {

 filters.Add(new HandleErrorAttribute());

 }

 public static void RegisterRoutes(RouteCollection routes)

 {

 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(

 "Default", // Route name

 "{controller}/{action}/{id}", // URL with parameters

 new { controller = "Home", action = "Index", id =

 UrlParameter.Optional } // Parameter defaults

);

 }

 protected void Application_Start()

 {

 AreaRegistration.RegisterAllAreas();

 RegisterGlobalFilters(GlobalFilters.Filters);

 RegisterRoutes(RouteTable.Routes);

 }

 }

You can add additional routes.

Examples of the Sitecore route extensions include:

// bypasses Sitecore and is handled by the ‘MyController’ custom controller

routes.MapRoute("example1", "special/{id}", new { controller = " MyController", });

// matches the item '/home/blogPosts/{blogNo}'

routes.MapRoute("example2", "blog/{blogNo}", new { scItemPath =

 "/home/blogPosts/{blogNo}", });

// sets language to {scLanguage} and matches the item '/home/{itemName}'

routes.MapRoute("example3", "home/{scLanguage}/{itemName}");

// matches the item '/home/{itemName}'

routes.MapRoute("example4", "home/{something}/{itemName}",

 new { scKeysToIgnore = "something", });

// matches the item '/home/{itemName}'

routes.MapRoute("example5", "home/{something}/{orOther}/{itemName}",

 new { scKeysToIgnore = new[] { "something", "orOther" }, });

A brief explanation of the custom route keys:

 scLanguage — The part of the URL that matches this key is used as the context language

for the request.

 scItemPath — No matter what the route URL is, the item is resolved by using the value of

this element. It can either be hard coded as in the previous example or be a part of the route

URL, for example, routes.MapRoute("myRoute", "/special/{*scItemPath}")

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 18 of 20

 scKeysToIgnore — One or more keys of the route URL that should be ignored by Sitecore.

If they occur in the route, they are removed before attempting to resolve an item from the
URL.

If a controller is not specified in a custom route, the default Sitecore controller handles the request.

Likewise, if an action is not specified, the default action ‘Index’ is used.

Note that a default route — {*pathInfo} — should not be set up in global.asax. Sitecore

installs a default route in the InitializeRoutes processor, as part of the initialize pipeline.

This will cause all routes not matching any of custom routes set up in global.asax to be handled by

Sitecore.

It is possible to hook into the route handling by adding processors to the GetPageItem pipeline

where the route parsing is done.

Sitecore MVC Developer's Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 19 of 20

Chapter 5

Additional Considerations for Sitecore MVC

This chapter lists additional details that have been added to Sitecore for MVC support
and some considerations when implementing ASP.NET MVC 3 with Sitecore.

This chapter contains the following section:

 Sitecore Data Templates

 Debugging

 Conditional Renderings

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 20 of 20

5.1 Additional Considerations for Sitecore MVC

The following sections describe some of the changes that have been implemented in Sitecore 6.6 to
support Sitecore MVC features.

5.1.1 Sitecore Data Templates

The following have been added to the standard template:

 __Controller Name — The name of the MVC controller to execute when the item is

requested. You can also specify a GUID in this field. The GUID should point to an item which

is based on the template Controller.

 __Controller Action — The controller action to execute.

 The field type of the __Renderers field has been changed from ‘text’ to ‘memo’.

The following templates have been added to the system:

 Controller — Specifies the name and action of a controller.

 Model — Specifies the type to use as a model for an MVC view.

 Controller rendering — Specifies the name and action of a controller to execute. If the

controller returns any output, it is rendered to the output stream.

 Item rendering — Indicates that the item pointed to by the data source of the rendering

should be rendered using the rendering definition stored in the item — using the

__Renderers field.

 View rendering — Specifies an MVC view to be rendered.

5.1.2 Debugging

Sitecore MVC uses standard Sitecore tracing and profiling.

Additionally Sitecore MVC supports Glimpse through the Sitecore.Glimpse.dll assembly. This

ships separately from MVC. This plug-in adds two tabs to the Glimpse view: Sitecore Trace and
Sitecore Profile. The information displayed here is the same as the standard Sitecore trace and
profile.

5.1.3 Conditional Renderings and Personalization

MVC does not support global conditional rendering rules — rules that apply to all renderings.

This means that when you use MVC, you cannot set up a system of global conditions that determine
which content is displayed to website visitors who meet these conditions every time this rendering is
called.

However, MVC does allow you to implement the personalization of components when you specify the
presentation details for individual elements on your website. In the Page Editor, you can personalize
content by specifying that visitors who meet some predefined conditions are shown particular content
items. You can also configure these personalization rules in the Content Editor and in the Page Editor
in the Layout Details dialog box.

	Chapter 1 Introduction
	1.1 Overview
	1.1.1 What is ASP.NET MVC 3
	1.1.2 Prerequisites for Sitecore MVC Installation
	1.1.3 How to Install Sitecore MVC

	Chapter 2 Sitecore MVC Pipelines and Request Handling
	2.1 MVC and the HttpBeginRequest Pipeline
	2.1.1 The PageDefinition Class
	2.1.2 Sitecore MVC Context Objects
	RequestContext
	PageContext
	PlaceholderContext
	RenderingContext

	2.2 Changes to Existing Pipelines
	2.2.1 Initialize Pipeline
	2.2.2 HttpBeginRequest Pipeline

	2.3 MVC Specific Pipelines
	2.3.1 RequestBegin
	2.3.2 RequestEnd
	2.3.3 CreateController
	2.3.4 ActionExecuting
	2.3.5 ActionExecuted
	2.3.6 ResultExecuting
	2.3.7 ResultExecuted
	2.3.8 Exception
	2.3.9 GetPageItem
	2.3.10 BuildPageDefinition
	2.3.11 GetPageRendering
	2.3.12 GetRenderer
	2.3.13 GetModel
	2.3.14 RenderPlaceholder
	2.3.15 RenderRendering

	2.4 Sitecore MVC Request Handling
	2.4.1 MVC Request Transferring
	2.4.2 Placeholder Processing
	2.4.3 Rendering Processing
	2.4.4 Item Renderings
	2.4.5 Inner Renderings

	Chapter 3 View Renderings
	3.1 Renderings

	Chapter 4 MVC Routing
	4.1 MVC Routes

	Chapter 5 Additional Considerations for Sitecore MVC
	5.1 Additional Considerations for Sitecore MVC
	5.1.1 Sitecore Data Templates
	5.1.2 Debugging
	5.1.3 Conditional Renderings and Personalization

